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Hamiltonian formulation of the evolution of moments over 
clusters of non-interacting particles 

Mark Andrews 
Department of Theoretical Physics, Faculty of Science, Australian National University, 
Canberra, ACT 2600, Australia 

Received 22 March 1983 

Abstract. The study of the evolution of the moments over a cluster of identical classical 
particles without mutual interactions is extended to the case where the motion of each 
particle is described by an arbitrary Hamiltonian. In the case of moments of the second 
and third order and ignoring contributions from moments higher than the third, differential 
equations are derived for the moments as well as explicit expansions. A distinction is 
made between the evolution of moments relative to the centroid and that of moments 
relative to a particle with initial position and velocity equal to those of the centroid. 
Although the former moments are more directly applicable and are independent of the 
choice of initial time, the latter have formal advantages. It is shown that these two types 
of moments differ in terms of order not less than four. 

1. Introduction 

If a cluster of classical particles is subject to a force field, the cluster will change with 
time both in its spatial distribution and in the distribution of velocities. One approach 
to studying these effects is to examine the moments of the cluster. 

Moments are usually referred to the centroid f = N-' EA x ( ~ ) ,  where 
x"), x"), . . . , x ( ~ )  are the locations of the particles, but for most of this paper, they 
will be referred to another point 6. Thus the second-order moments are 

".. IJ = N - '  1 ( f i A '  -ii)(jjA' -ij), 
A 

These have a direct physical interpretation; for example, the diagonal elements xii 
measure the mean-square deviation from 6 in the ith direction while the off -diagonal 
elements xij measure the correlation between deviations in the ith direction with 
deviations in the jth. The elements of lij measure the extent to which deviations in 
velocity are correlated with deviations in position. To provide greater detail of the 
cluster, one could then examine the third-order moments and so on. 

For the case of a cluster of identical classical particles moving without mutual 
interaction under forces describable by a potential V ( x ) ,  the equations of motion for 
the second-order moments were reduced in an earlier paper (Andrews 1981b) to an 
approximate set which determine the moments for all times from the moments at 
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some initial time. This was achieved by expanding the potential about the position 
of a particle with the same initial position and momentum as the centroid. The 
trajectory of this particle will be referred to as the basal trajectory, &( t ) .  Unless 
otherwise stated, all moments will be referred to the basal trajectory. The set of 
differential equations so found was approximate to the extent that all terms of the 
third order or higher in the deviations from 6 were ignored. It was further shown 
how these equations could be solved in terms of a complete set U,", of solutions 
of the time-dependent oscillator equation 

ii, +C$, , ( l )U ,  = 0 (1.2) 

where C$,(t) = m-l VI,(() ,  The required complete set of solutions can be found by 
differentiating the trajectories under the potential V with respect to initial position 
and velocity. This approach was extended in the case of one spatial dimension to 
third-order and higher moments by Reid and Ray (1983). These two discussions 
focused attention on particular mathematical aspects, the first on invariants of the 
time-dependent oscillator equation and the second on a certain hierarchy of self- 
adjoint equations that arise. 

The purpose of the present paper is to illuminate the earlier work and to extend 
it to the case of a cluster of identical particles whose motion is described by a 
Hamiltonian, still excluding mutual interactions. At the same time third-order 
moments will be included and a more compact notation will be adopted: by collecting 
the n generalised coordinates q, and the n momenta p I  into one 2n-dimensional vector 
x a  significant formal simplification is achieved. For example, the three second-order 
moment matrices xl,, &,, U,, are contained in one symmetric 2n-dimensional matrix, 
,yap. The formal advantages are enhanced by the fact that the transformation between 
the x a  and their initial values (described by the matrices U,", U: and their time 
derivatives) is symplectic. 

In the earlier work, the moment expansion for the moments in terms of their initial 
values was obtained by solving their differential equations. In the quantum context, 
where this work had its origins (Andrews 1981a), there are no trajectories and solving 
the differential equations appears to be the only method available. But in the case 
of a cluster of classical particles one can sum directly over the trajectories to obtain 
the moment expansion and this is carried out in § 3. 

In the earlier work it has not been completely clear whether one should expand 
the potential about the centroid or about the basal trajectory. Both are possible but 
the view is taken here that there are great formal advantages in expanding about the 
basal trajectory and evaluating all moments about the basal trajectory. It is shown 
that moments referred to the basal trajectory differ from moments referred to the 
centroid only in terms of the fourth order. In applications one normally requires the 
moments about the centroid; indeed the moments about the basal trajectory suffer 
from the great disadvantage that they depend on the choice of initial time. It is, 
however, a straightforward matter to transform between these two types of moments 
and this is dealt with in 0 6 .  

2. The symplectic notation and the symplectic transformation 

The particle trajectories will satisfy Hamilton's equations 

qi = aH/api hi = -aH/aqi 
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where H ( q , p ,  t )  is the Hamiltonian and the index i runs from 1 to n, where n is the 
number of generalised coordinates q required (normally three). Using the symplectic 
notation (see e.g. Goldstein 1980, p 347 and 0 9-3), let Greek indices run from 1 to 
2n and introduce x u  with x '  = q l  and x " + '  = p I  for i = 1 , 2 , .  . . , n. Also introduce 
such that E ' . " + '  = 1, E " + ' . '  = -1 for 1 si s n  and all other elements are zero. Written 
as a block matrix, with n x n blocks and ( a ,  p )  element equal to E=' ,  

E = (*). -1 0 (2.2) 

Now Hamilton's equations can be written 

x u  = &"@Hp (2.3) 

where, as usual, a subscript p on H denotes partial differentiation with respect to x p .  
A particular trajectory x"(s, t )  can be characterised by its initial values a ;  thus 

x"(a, 0) = a". Consider now a cluster of identical non-interacting particles specified 
by uUA, A = 1 , .  , , , N. The basal trajectory 6" is defined to be the trajectory with 
initial value 6" = N-' u"A. 

The analogues of the functions U / ,  vi' and their time derivatives are 

U"p(t)=ax"/aUP/,=. (2.4) 

and differentiating Hamilton's equations (2.3) yields 
6 

U a p  = ~ ~ ~ h ~ 6 ~  p 

where hY6( t )  is HY6 evaluated on the basal trajectory. This equation is the Hamiltonian 
generalisation of the time-dependent oscillator equation (1.2). 

Since the transformation from aa  to x u  will be canonical, one would expect u a p  
to be symplectic, i.e. 

U-' = &fi& (2.6) 

and this can be verified directly as follows. In matrix form, (2.5) reads 0 = &hU and, 
since E' = -e and h'= h,  the transpose of this is 0 = - f ih&. Therefore, using E' = 1, 

d(f i&U)/dt  = 6&U + f i ~ U  = 0. 

Since the initial value of u a g  is Sap,  equation (2.6) follows. 

3. Evolution of the moments to third order 

In this section, no use will be made of Hamilton's equations. All that will be assumed 
is that we are dealing with a family of trajectories that can be expanded about the 
basal one in powers of the deviations of the initial position and velocity from those 
of the basal trajectory. It then emerges that the moments at any later time can be 
expressed as an expansion involving only the initial moments and the coefficients in 
the expansion of the trajectories. 

Expanding the trajectories about the basal one yields 

x P  (U,  I )  = 5" + (U' - d ' ) ~ " p  +$(U' - a P ) ( a  - d Y ) p " p ,  + O(3) (3.1) 
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where O(m) is used to represent quantities of order m in the deviations from the 
basal trajectory and 

p a B Y ( r )  = a2xu/aa8 aaYlo,a. (3.2) 

Xu' = N-' X ' ~ X B ~  (3.3) 

N-' X ~ A X ' A X ~ A .  (3.4) 

Writing X" = x u  -tu, the second-order moments are 

A 

and the third-order moments will be written as 
KueY = 

A 

Inserting (3.1) for X u  into these sums and retaining terms up to the third order yields 

(3.5) xu' = xOs"u "su ' v  + ~ K O & '  (U  

K"" = K ~ ~ " u ~ ~ u ' ~ u ' ,  +0 (4 ) .  (3.6) 

f" =tu + f x ~ ' ~ p ~ ~ ~  + 0 ( 3 ) .  (3.7) 

+ U 'sp",) + O(4) 

The evolution of the centroid is simply obtained by summing (3.1) over the cluster: 

In comparing these results with earlier work, one must recognise that K " ' ~  contains 
four third-rank tensors in the n-dimensional formalism. These were labelled 7, U, K, 
7 by Reid and Ray (1983), who dealt only with one dimension. When the Hamiltonian 
is just the sum of the kinetic and potential energies and equation (3.6) is reduced to 
one dimension (n = 1) and is written out in terms of these four quantities, the result 
agrees with equations (3.9) of Reid and Ray. These authors did not give the result 
corresponding to ( 3 3 ,  for which it would have bcen necessary to solve their differential 
equations (3.7). These differential equations can be solved by the method to be given 
in 0 5 .  

It is clear that the procedure that led to (3.6) can be extended to any order to 
show that for the moments of order m, 

~ ~ ~ ~ ~ u ~ ~ ~ ~ .  . . u ' m S ,  + O ( m  + l), - x o ' l P 2 4 n  xu1u2"'"m - (3.8) 

here usingx to denote moments of any order. This result generalises the corresponding 
result of Reid and Ray. 

4. Differential equations 

Expanding the Hamiltonian about the basal trajectory gives 

HS(x,  t ) = H B ( S + X ,  r ) = h s + X Y h s y + ~ X Y X S h s y s + 0 ( 3 ) .  

Inserting this into (2.3) leads to 

ku = E ~ ' ~ ~ J ~ + ~ E ~ ' ~ ~ ~ , & ~ X ~  + 0 ( 3 )  (4.1) 
where we have used 4" = &"'hg. Now differentiating the second-order moment (3.3) 
and inserting (4.1) yields 

(4.2) xu' = &u'hSr~YP + ~ ~ ~ h ~ ~ ~ ~ ~  + f & " ' h p y ~ ~ y S p  + ~ & P ' h g y ~ ~ Y * u  +0(4 ) .  
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Similarly, for the derivative of the third-order moment K ,  evaluated only to the third 
order, 

E "'hSoK up' + E ' *h&K + E "hsUK + O(4). (4.3) 2 " P Y  = 

Of course the expressions for the moments given in (3.5) and (3.6) must satisfy 
these differential equations. Verification of this requires L ipp ,  given in (2.5), and 
also pasv which can be found by differentiating (2.3) twice: 

(4.4) 
6 S A  

p a p y  = E u'h,sp pv + E  (lUhu6AU ,U '. 
Equations (4.2) generalise my earlier results (Andrews 1981b, equation 11) to the 

third order and to arbitrary Hamiltonian systems, while (4.2) and (4.3) generalise the 
corresponding equations (3.4) and (3.7) of Reid and Ray (1983) to arbitrary dimensions 
and Hamiltonians. 

5. Solution of certain inhomogeneous equations 

Inhomogeneous equations of the form 

p" = EuYhygs  +f" (5.1) 

can be solved by the standard procedure (for example, Coddington and Levinson 
1955, theorem 3.1) to give 

where 

G"p(t,  t ' )  = UU,(t)E Y 6 U u g ( t ' ) E u p .  (5.3) 

The symplectic property implies GnS(t ,  t )  = S U B  and from (2.5) it follows that 

dG",(t, t ')/dt = eaYh+( t )Gdp( t ,  t'). (5.4) 

These properties ensure that (5.2) satisfies (5.1). 
Since equation (4.4) for pusr is of the form (5.1) it follows that the papv  can be 

expressed as an integral over products of the U " ,  and the third derivative of the 
Hamiltonian: 

p"p,(t)  = jot G", ( t ,  t ' ) E  'Luh ( t  ' ) U  ( t ' )u  ',.(t ') dt. (5.5) 

It is also possible to solve inhomogeneous equations of the form of (4.2), 

+EBYhyg6a +rB (5.6) pa6 = E "Yhyg68 

where f a @  and pap are symmetric. By inspection, the solution is 

p a @ ( , )  = U " , . U ~ B ~ ' ~ ( O ) +  Gay(t,  t')Gp6(t, t ' ) f '*(f ' )  dt. Id (5.7) 
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6. Moments relative to the centroid 

It is straightforward to transform the moments to a different point of reference. Here 
we need to transform the moments relative to the basal trajectory to those relative 
to the centroid. Writing ,yap, I?."" for the moments relative to the centroid, let 
A" = f a  - 6" and expand thk moments in powers of A. Thus 

x a P  = N - ' C  ( X > - Z " + A ~ ) ( X $ - Z ~ + A ~ ) = ~ ~ ~ + A ~ A ~ ,  (6.1) 
A 

Similarly, 

(6.2) 

(6.3) 

K ~ P ~  - a P v + ~ a ~ P r + ~ P ~ v a  + A Y ~ Q P + A Q A P A V  
- &  

and the inverse of this is 
4 7  = aPv - A Q ~ P Y  - A P ~  - A Y ~ ~ P  + ~ A Q  AP A Y .  5 

Equation (3.7) reads A" = ~ , y x o P y p a P v  + 0(3), and hence the difference between the 
moments relative to the centroid and the moments relative to the basal trajectory is 
of the fourth order. 
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